Engineering Degrees of Agency

Steven P. Fonseca
QSS Group Inc., NASA Ames
MS 269-2
Moffett Field, CA 94043
011 650 604 1083

fonseca@email.arc.nasa.gov

ABSTRACT

The Mission Control Technologies Project at NASA Ames
Research Center is developing component-based middleware with
multi-agent like characteristics that must satisfy many competing
quality attributes. This paper makes the observation that, while a
multi-agent system solution is a relevant source of architecture
and design artifacts, it is not possible to achieve the desired
system quality attributes with a purely MAS implementation.
MAS frameworks offer agents as the primary unit of
decomposition and encapsulation. The degree of agency is also
selected by framework developers — indicating that the agent
abstraction is not considered a point of framework variability. We
introduce the notion of engineering degrees of agency into an
application framework by designing points of variability (hooks)
that enable a programmer to tune the degree of agency used
through customizations of the agent abstraction.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features — abstract data types, frameworks, patterns, modules.

General Terms
Design, Reliability, Languages.

Keywords
Multi-agent system, framework, component, agent-oriented
software engineering, semantic web, reuse, distributed
architecture.

1. C3I REQUIREMENTS AND DESIGN
INFLUENCES

Operations software at NASA has traditionally been written to
satisfy narrow sets of requirements that are driven by specific
mission needs. Within the bounds of supporting a single mission,
the software infrastructure used is a largely non-integrated
collection of applications. The result of this approach to
enterprise information system (EIS) design is a severely limited
ability to achieve reasonable levels of interoperability, flexibility,
evolvability, reliability, and other quality attributes that make
building these systems cost efficient and ensure that the system
performs as required. As with many organizations faced with
satisfying similar EIS requirements, achieving such quality
attributes are of primary importance to the Control,
Communication and Information (C3I) architecture under
development at NASA as part of the Constellation Project for

continuing human exploration of space. Constellation envisions
missions where the number of elements and the number of their
interactions has significantly increased in comparison to today’s
missions. Furthermore, and in stark contrast to the closed system
design of past and current missions, it is predicted that new kinds
of elements will be routinely introduced to the system throughout
the lifetime of a mission. In the abstract, similar capabilities are
afforded by the agent-oriented programming paradigm (herein
refereed to as AOP, not to be confused with the more common
acronym used for aspect-oriented programming).

The hallmark of the agent-oriented programming paradigm is the
decomposition of a system into loosely coupled and autonomous
software agents that readily interact with other software agents
and their environment. Although multi-agent systems (MAS) can
be closed, this programming paradigm guides designs toward
being open and offering a flavor of service-oriented architecture
(SOA). As with SOA, but in the vernacular and context of the
C3I, “Applications will be modular and support a decoupling of
‘what’ the functionality provides from ‘how’ the functionality is
provided. Application component reuse and sharing of common
capabilities between C3I Instances...will be required to reduce the
cost and solve the temporal restrictions imposed by deep space
missions” [10]. This statement is from one of a number of
documents coming online as the conceptual framework and
requirements for C3I are developed. These documents indicate
that, to a first approximation, agent-oriented programming and
multi-agent system design abstractions can be leveraged and are a
natural fit for realizing the C3I’s envisioned system. The key
system characteristics desired by C3I that are supported by multi-
agent systems solutions include:

* Independent software elements

e Highly interactive software elements

* Element interaction via loosely coupled message exchange
e Message level connectivity standards

e Semantic interoperability achieved by information models
(ontologies)

e Software elements are consumers of declaratively specified
knowledge

* The system exhibits intelligence including the ability for
inference, with the particular long term vision of having an
adaptable, self-configuring system

1.1 C3I Quality Attributes

The characteristics described above establish the relevance of the
agent-oriented programming paradigm to the design of the C3I
system but do not provide an indication of just how well they
satisfy the quality attributes of interoperability, flexibility,
evolvability, and reliability. As is known [1] and can be
intuitively predicted, the achievement of quality attributes requires
designers to balance system capabilities since attributes are
frequently dependent on one another and can share inverse
relationships. The question then becomes to what degree the
balance of quality attributes of a typical multi-agent system
solution match-up with that most appropriate for the C3I system.
The follow-on question and a focus of this paper is how can the
agent-oriented programming paradigm be adapted and augmented
to satisfy the C3I system requirements.

Beginning first with interoperability, a high level assessment is
provided of the shortcomings of using the AOP paradigm and
technology bases to satisfy several of the C3I quality attributes.
Abstractions supporting interoperability between agents are well-
supported by AOP, whose major contributions are the
development of agent communication languages and grounding
the semantics of messages through the use of ontologies
(originated by the artificial intelligence community). However, to
date the widespread industrial adoption to AOP originating
communication languages has yet to take hold, with the open
distributed systems community at large instead embracing web
services technologies and their successor the semantic web
technology base. An additional observation is that AOP systems
are typically implemented with academic and industrial research
lab frameworks. Across such platforms, interoperability can only
occur at the granularity of an agent but it is very common for such
agents to be further decomposed into potentially reusable
behaviors. These behaviors are typically not executable outside of
their local context. In summary, the C3I interoperability
requirement is better met by adherence to standards that are more
widespread and where the more fine-grained behaviors of the
system, while possibly strategically hidden, can also be readily
exposed to and consumed by any software element in the system.

The AOP paradigm and its instantiations provide high levels of
flexibility through agent autonomy of action, dynamism of agent
presence, loose coupling of communication connectivity, and
autonomy of agent behavior change. This level of flexibility is
too high for C3I and must be balanced with the desire to achieve
reasonable levels of system verifiability and reliability. Central to
the notion of autonomous agents is its ability to control when and
how it acts. While this level of flexibility may be appropriate for
some portions of the C3I application space, there are certainly
many mission-critical functions where it is essential to have
software execute in accordance with contractually specified
interfaces of some kind. Dynamism of agent presence where
agents can be introduced and removed dynamically to a running
multi-agent system is in principle well-aligned with this facet of
C3I flexibility. Loose coupling of communication connectivity is
also well-aligned with C3I needs but pragmatic engineering
considerations make unlikely the direct reuse of most of the
standard AOP design idioms. As a particular example, messages
exchanged between agents are typically accompanied with
significant interoperability-facilitating metadata. This is a
noteworthy expense when the actual message is short or the
agents already share enough knowledge to communicate, not to

mention that the application programmer is burdened with having
to code-in the metadata. Finally, AOP and its instantiations
permit the dynamic additional and removal of agent behavior that
is communicated via publication and cancellation of agent
services. While it may be appropriate for some portions of the
C31 application space to be this flexible, greater control over
behavior availability must exist to increase system reliability.

Agent-level evolvability is typically provided by multi-agent
system frameworks that support the introduction of new agents to
the system where these agents typically are managed in
accordance with a lifecycle model [3]. This runtime mechanism
provides a starting point for achieving C3I system evolvability.
Two abilities that are not offered by typical MAS framework are
agent versioning where updates can be managed in fine-grain
detail and an infrastructure that propagates updates to copies of
software agents. In AOP, only one such agent with a unique
identity exists in the system but the component-based system of
C3I envisions replicated instances that would require a code
synchronization algorithm and infra-structure support for
component updates. Loose coupling of software elements is an
essential requirement for the system to evolve but was already
addressed in the context of system flexibility.

Quality attributes are an important consideration in developing the
C31 design but is not the only one. Functional capabilities and the
leveragability of third party software also influence design. These
kinds of considerations are periodically identified as part of the
design rationale throughout this paper.

1.2 Balancing Design Tradeoffs

From the discussion above it can be seen that the AOP paradigm
and its instantiations can be leveraged in designing the C3I
architecture. It is also clear that both adaptations to AOP are
required and that design artifacts from other distributed system
approaches are preferred in some cases. Considering adaptations
to AOP, one makes the observation that MAS solutions provide
distinctly AOP framework supporting instantiations. MAS
frameworks offer agents as the primary unit of decomposition and
encapsulation. The degree of agency is also selected by
framework developers — indicating that the agent abstraction is
not considered a point of framework variability. The effect of this
common thinking within the community of developers is MAS
framework implementations that support their own specific flavor
of agency (generally emphasizing characteristics that are inline
with an anticipated application domain or research interest) that
cannot be readily adapted. Analyzing the C3I system
requirements leads to the hypothesis that to successfully deploy
large-scale multi-agent systems requires frameworks that permit
programmers to choose the degree and character of agency used
for a particular application implementation context. This
flexibility is critical in developing enterprise information system
architectures, such as that envisioned by the C3I, to optimally
balance a complexly related set of quality attributes. The goal in
engineering degrees of agency is to build into an application
framework the points of variability (hooks) that enable a
programmer to tune the degree of agency used through
customizations of the agent abstraction.

2. MCT COMPONENT MODEL

Mission Control Technologies is a project within the Intelligent
Systems Division at NASA Ames Research Center that is a

contributing member of the C3I effort. MCT endeavors to create
a component-based infrastructure that supports mission operations
where its set of frameworks provides a comprehensive suite of
system capabilities including distribution, = messaging,
collaboration, and workflow; fine-grain and dynamic graphical
composition of data representations; and a semantically rich
infrastructure that facilities interoperability between components
and the integration of external applications.

2.1 Component Model Base Requirements

An incremental approach to MCT component model development
enabled the strategic realization of capabilities. For the first
iteration implementation, it was highly desirable to postpone some
design decisions until further programming experience was
gained. Therefore, the initial set of requirements that are shared
below was selected to build a component model where much of
the interaction between components and the manipulation of
component state were unconstrained. Note that requirements
were also prioritized with respect to demonstrating proof of
progress. An application prototype was written using a base
implementation of the component model. This experience
provided insights into the difficulty of developing a component-
based application in the absence of programming language
mechanisms (type checking, static interfaces, etc.) known to
improve software robustness and reliability.

The following requirements drove the first iteration

implementation of the component model:

* Reuse of components in alternate contexts (composability)
* Dynamic addition of attributes and behaviors

* First-class annotation of component data

* Loosely coupled interaction

e API domain independence

* Reaction to component state change

* Lifecycle management

2.2 Component Model Design, First Iteration
An introduction to the MCT first iteration component model
design begins with its static model shown in Figure 1. Though
the model contains names for some of our true Java interfaces and
classes, this model should be read as a hybrid conceptual and
implementation model as many of the classes shown have no
corresponding source code class. Note that interesting features of
the component model are intentionally left for description in
another paper. The objective here is to provide the reader with
enough background information to understand how degrees of
agency are engineered into the component model.

At the heart of the MCT system is the concept of a reusable
component being used as a foundational block from which
applications can be built to interoperate. The fundamental
capabilities of a component are defined in a set of interfaces that
include Ildentity, IMessageable, and IComponentInternals, all of
which are inherited by IComponent. Descriptions for each of
these interfaces are provided below:

The non-inherited methods of the IComponent define a general-
purpose API that establishes an interface for a general-purpose
data structure that all components must support. Fundamentally,
this data structure must be able to store component attributes and

behaviors. Four of the primary requirements satisfied include the
ability for a component to be composed of inheritable parts
(computed value) or other components (served value), having
state (stored value), and having the ability of a component to
support the dynamic addition of behavior. These requirements are
driven by the system’s need to support a rich but general
information model and to support the level of flexibility and
extensibility needed to achieve the fine-grain composition of
application components.

The general-purpose data structure API necessarily introduces an
additional layer of abstraction above the Java programming
language to circumvent the static type checking provided by Java
and also supports the dynamic addition of arbitrary but well
encapsulated behaviors (functions) that implement the IActor
interface. Lack of static type checking leads to a more loosely
coupled and more easily extensible system because new data types
can be introduced that are not necessarily part of an a priori
defined type hierarchy. The IActor interface provides the API
necessary to effectively extend Java to support methods as
parameters and methods as executable values.

Also realized by the IComponent interface is the requirement of
providing full support for annotations. This, and the other data
and behavior storage requirements have resulted in an API that
defines the notions of and the operations for an internal
component data model that is organized into fields, facets, notes,
and values.

As shown in Figure 1, a component has zero or more fields. Each
field is named and has a set of values. Fields and their values
allow a component to store and retrieve both behavior (IActors)
and attributes. A field may have zero or more facets. Facets are a
kind of annotation that has a name and associated values. Facets
allow a field to be further discriminated. For example, a field
named “color” might hold a string of value “red” with a color
facet of name ‘“‘enumeration” where the facet values are “red,”
“green,” and “blue.” In this example, and a common use for
facets, is the storage of typing information for a given field.
Annotations on the value set of a field are also permitted, are
called notes, and also have names. Adding to the previous
example, one could add to the value set containing one value
“red”) a note named “opacity” with a value of “0.95.”

A core capability needed to satisfy the high level design goal of
building a system that supports a rich user experience is to have a
well-integrated event listening mechanism to detect and respond
to changes in the content of a component so these changes can be
readily propagated to the user interface for rendering. Since the
attributes and behavior of a component are stored in its fields,
facets, values, and notes; it is the manipulation of these structures
that must be continuously watched to detect component changes.
When a component change of interest is detected, the code for
handling the event must be executed. This code, like the other
behaviors of a component, is encapsulated within an object
implementing the [Actor interface.

The behaviors responsible for responding to component content
changes can be further classified by the kind of operations they
respond to, when the behaviors are executed, and the kinds of
structures (note, value, field, and facet) a behavior watches.
Behaviors can execute inline — the behaviors associated with a
given data structure and operation type are executed before the
operation that triggered its execution. This class of behaviors is

modeled concretely in Figure 1 and includes CreationAccessor,
GetAccessor, and PutAccessor. Behavior can also be executed
asynchronously — the behaviors associated with a given data
structure and operation type are added to a task queue and the
operation is immediately completed. The task queue manages
behavior execution including setting scheduling priority and the
collapsing of behaviors to improve system performance while still
maintaining semantic integrity. Note that inline behaviors can
affect the results of an operation while asynchronous behaviors
cannot. This class of behaviors descends from Listener, with the
specializations ValueListener and NoteListener.

The IMessageable interface defines the general-purpose
mechanism that is used for two components to communicate. A
quick look at the API definitions reveals that the method
signatures are very general; the passing of “messages” in MCT
means communicating through the IMessageable interface via the
exchange of Java Objects, the passing of a message type
parameter that serves as a high-level indication of the kind of
message that is being sent, and a return “message” that is also a
Java Object. This is in contrast to traditional object-based

LTl
o ‘contains the names of the fields for its
a5 sharing a part-whole relationship. This allows
the delegation of the requests a component.

anterfacer
© Identity

 gethlame () recehvetessage ()
o ALL_PUT_ACCESSORS
o ALL_GET_ACCESSORS

anterface» o ALL_LISTENERS

Graphical representations of IComponent © VALUE_LISTENERS

companents are themselves e Tre krg(s&nﬁdo %:;)s tuhfictursh(w.: o

comporent © NOTE_LISTENERS compenent rode e defnedn
© PUT_ACCESSORS IComponentIntemals
o GET_ACCESSORS

«nterface»

© IcomponentEnvironment

& sesson () © StandardCompanent Bincor Sridws

© deviee ()

o user sact()

© ceate () 5

© CreationAccessor O GetAccessor | © PutActor

runs from

A Listener runs as the result of a
variety of operations that are defined
¥ 1 [FOPULACeSOr Olistener |y icomponentinterals but not
3 O Facet enumerated i this model, These
Notes are annotations on a value G rield S Gperations nclude ADD, CREATE,
i (GET?), PUT, REMOVE, and REPLACE

Facets are annotations on a field 1 © ValueListener

1
G valueList |

1

Gvalue |1 *| GNote O NoteListener
A value can be an IComponent S
1

Figure 1 MCT component model, first iteration.

systems that expose a set of methods that are associated with
programmer inferred semantics, where their meaning comes from
descriptive and distinctive method names, methods that are
parameterized with a widely varying set of object types, and
whose return types are frequently specialized. API’s that are
designed in this fashion blend into the object interface
specifications application domain concepts. An alternate
approach, one that is used heavily by the software agent
community, is to remove the semantic meaning found in method
signatures, define these concepts in a set of ontologies, and then
use these ontologies to communicate intention within the body of
the messages that are exchanged between agents. This is the
solution offered by the IMessageable interface. This interface
keeps components loosely coupled by providing a standard
mechanism through which components can interact but in a way
that is sufficiently general to allow communication between
components that never knew about each other which talk about
things that might never have been previously discussed. This is in
contrast to traditional object oriented systems where who you can
talk to and what you can talk about are more tightly constrained.

2.3 Component Role Description

The notion of a role is used by the MCT component model to
define a set of attributes and behaviors that a component can have.
The role description mechanism was fairly primitive for the first
iteration implementation of the MCT component model but is
being expanded as described in Section 2.4.4. Previously a role
was an XML-based description of a set of attribute and behavior
names that were associated with a role name. No further
semantics were declaratively captured. For a component to play a
given role, it must have contained fields with names for all of the
role’s attributes and behaviors.

2.4 Component Model Variability Points

A major goal of the second iteration design of the MCT
component model is to introduce the language and system
mechanisms necessary to achieve the C3I quality attributes and to
generally provide developers with enough programming support
to build robust components. Adding in these mechanisms as
framework variability points was driven by the need for the
component model to be sufficiently flexible to serve as the base
for a wide range of mission operations software. This section
presents these variability points as primitive language capabilities
and API features. Additionally, as discussed in Section 3, these
variability points are what make it possible for a component to
take on customized degrees of agency.

MCT components execute within an infrastructure that is
distributed and information-centric. ~The User Platform and
Information Semantics Manager are two MCT subsystems that
support the component model and its variability points. Each
subsystem includes a variety of features, most of which are not
shown in Figure 2. This figure enumerates a general use case
sequence for the enforcement of component model configuration:
(1) The User Platform is parameterized with a component model
configuration and system introduced role definitions, (2) the User
Platform delegates responsibility for maintaining configuration
information to the Information Semantics Manager, (3) the
application provides the platform with a description of application
components, (4) the User Platform delegates the management of
application component descriptions to the Information Semantics
Manager, (5) the application requests component creation, (6) the
User Platform requests a description of the component, (7) the
component is instantiated, (8) the application uses the component,
(9) the component base enforces the component model
configuration.

All MCT information models including component configuration
is ontologically expressed using the OWL language. The
following sections discuss the variability points can be specified
and enforced at runtime.

2.4.1 Data Typing

Static versus dynamic type checking has long been a
programming language design decision with an interesting trade
space. The MCT component design attempts to circumvent
dictating that a single type checking policy be enforced and
instead opts for permitting no type checking, dynamic type
checking, and pseudo-static type checking. The configured type
checking policy of choice can be applied to constrain the
messaging between components or the kinds of values that can be
stored in the field of a component. Using the base
implementation of the component model as-is, no type checking is

performed. Supplying the system at runtime with an information
model that richly describes the roles that a component can play
permits the enforcement of dynamic type checking, where this
type checking is coordinated with the Information Semantics
Manager shown in Figure 2. Pseudo-static type checking is
achieved by providing a component development tool with the
information models and interpreting application code as it is
written.

Performance, degree of coupling, reliability, rapid development,
and component developer understanding are key considerations in
selecting the data typing policy for a particular portion of an
application.

2,4
<<delegates>>

Component
Model
Config.

Information
Semantics
Manager

Mission
Policies
System
Config.

9

<<enforces>>

Type checking has generally meant determining if a software
1

Role
Definitions
<<configures>>

User Platform

5

<<requests>>

3

<<configures>

<<requests>>

Component
Definitions

Application

<<creates>>

8

<<uses>

component
API

application
behavior
. and attributes

° GET
s PUT
= ADD

o REMOVE
o REPLACE
= SEND
o INIT

component
base

Figure 2 Component model policy enforcement use case.

element fits into a hierarchical categorization scheme. The
functional specification of behavior enables a system to enforce
type constraints based upon functional equivalence, which is a
potentially more fine-grain typing mechanism that MCT is
exploring.

2.4.2 Cardinality

The fields of an MCT component are multi-valued. Cardinality
enforcement ensures that the number of values a field stores is
within the bounds specified by the information model.

2.4.3 Field Names

Recall that field names are the symbolic ids associated with
component attributes and behaviors. The base component model
implementation permits the dynamic creation of fields where
application code is free to choose their names. It is desirable to
have system enforced field naming conventions that aid the
intuitive understanding of component developers. An even
stricter requirement is to only permit the use of field names that
explicitly expressed in an information model. Both of these
abilities are part of the second iteration component model design.

2.4.4 Field Semantics

The establishment of field semantics expressed using ontology-
based information models is an important addition to the MCT

component model because it enables components to reason about
the behavior of other components, facilitates interoperability
between components, provides system metadata that aids in the
verification of component functionality, and adds a standards-
defined layer to the MCT component model that improves its
chances for wide scale adoption. Semantics can be associated
with both the attributes and behaviors of a component. The
design intention is to use portions of the prevailing semantic web
services language as part of the MCT role description mechanism.
Based on work in this area, one can anticipate varying levels of
attribute and behavior specification including simple naming,
parameter ordering, data typing, hierarchical behavior
categorizations, and functional behavior description. Because the
level of effort required to specify semantics and the degree to
which these semantics can be used by the application vary
considerably, the component model uses polices that dictate the
amount of specification required to describe roles.

2.4.5 Component Malleability

The base implementation of the component model allows
attributes and behaviors (fields) to be dynamically manipulated in
any way seen fit including their removal. This makes the
components very modifiable and permits a high degree of runtime
adaptation. The downside to this flexibility is not being able to
predict or rely on the presence of a particular attribute or behavior
at any moment during program execution. Even though a role
matching mechanism is provided by the Information Semantics
Manager to determine if a component is playing a role, it is
possible that the role could be modified directly after the test for
satisfaction. ~ Configuration of the component model permits
varying degrees of modifiability that is categorized as open,
immutable, additive, or replaceable. Open malleability allows
attributes and behaviors to be freely modified while immutable
malleability prohibits attribute or behavior changes once the
component is instantiated via a declarative description or
prototyped from an existing set of components. Additive
malleability permits the addition of previously non-existent
attributes or behaviors in contrast to replaceable malleability that
prohibits the introduction of new attributes and behaviors but
does allow existing ones to be overwritten.

2.4.6 Component Content Model Accessibility

The base implementation of the MCT component model
circumvents the scoping mechanisms of Java in favor of publicly
exposing the entire set of every component’s attributes and
behaviors. The MCT component model design hopes to re-
introduce a richer form of scoping to regulate the visibility of
component internals based on many considerations including user
permissions, role-based permissions, and role type.

2.4.7 Time Alarm Access

The User Platform provides an alarm service that can be used,
among other ways, to generate heartbeat events for components
wishing to more proactively execute. = Component model
configuration permits the restriction of this service as appropriate
for an application.

3. DEGREE OF AGENCY

A reasonable level of agreement on the definition of an agent must
be in place before highlighting how variable degrees of agency are
provided by the MCT component model. Starting first with an

enumeration of their possible characteristics adapted from
Franklin’s classification properties [5], an implemented software
agent can be communicative, proactive, reactive, autonomous,
goal-directed, temporally continuous, mobile, learning, and
intelligent. The component model is compared against these
attributes in assessing degrees of agency, however, it is noted that
the essence of agency is more narrowly defined by Wooldridge
and Jennings [11, 12]. Paraphrasing their definition, an agent is a
hardware or software-based computer system that is autonomous,
social, reactive, and proactive. Autonomy implies that an agent
functions without depending on user control and is ultimately in
control of its actions and internal state. Having social ability is
the requirement that an agent can communicate with other agents
using an agent communication language. An agent is reactive if it
can perceive and respond to its environment. Finally, an agent is
proactive if it exhibits goal-directed behavior and takes the
initiative to pursue its goals. Considering the core traits identified
by this definition is useful in assessing the degree to which a
component fundamentally acts like an agent.

In the subsections that follow, an assessment is performed of the
MCT component model and system infrastructure’s ability to
support agency and multi-agent systems. New portions of the
MCT system design are briefly described in addition to
connecting how the component model variability points support
degrees of agency.

3.1 Communicative

Communicative ability is a permanent feature of MCT
components and a basic infrastructure exists to facilitate their
interaction including white and yellow page platform services. As
with many agent systems, three types of messaging are possible,
(1) synchronous, (2) asynchronous, (3) and synchronous with
timeout. Because components have access to richly described
behavior semantics via query of the Information Semantics
Manager, it is generally unnecessary to include static metadata
with the communication of a message to another component.

3.2 Proactive

The proactive characteristic of a component can be regulated by
limiting access to the system time alarm. In terms of an agent
executing behavior in the absence of stimuli (application events),
there is nothing more to the infrastructure for permitting agents to
be proactive than allowing them to be pulsed with time events.
The proactive characteristic of a component is also easily
accomplished by the MCT system infrastructure by providing an
alarm timer. Reactive components do not have access to the
alarm timer and are therefore only allowed to execute in response
to externally generated events. Proactive components can prompt
themselves to execution using the timer alarm but can still
respond to external events. Finally, the proactive pace can be
regulated by policy enforced minimum slices of time between
alarms.

3.3 Reactive

A reactive agent can perceive and respond to its environment.
MCT components are supported by an infrastructure where
semantically rich information is pervasive and its “environment”
is an aggregation of information services that are provided by the
User Platform and Information Semantics Manager. For the
perceiving portion of reactivity, the degree of access that a
component has to information is regulated by mission-defined

policies including any security enforcement. @A component
exposes its behaviors according to the discussion given in Section
3.4 and can be configured such that no responses can be initiated
by its environment.

3.4 Autonomous Components

Autonomous agents do not directly expose their content model,
communicate through a generic domain-independent channel
using a general-purpose information format (at the API level), do
not directly expose their behavior for invocation, and have the
option to refuse behavior service requests. Model configuration
allows MCT components to take on varying levels of autonomy.
For maximum autonomy, the corresponding component
equivalent would provide no visibility to its content model, would
play the part of no application-specific roles, and would service
all messages received through the general message receiver role
behavior where the information passed was only primitively
typed. From this extreme, it is possible to provide a degree of
autonomy that depends on the extent that roles are played, the
level of specificity of these role descriptions, the satisfaction of
the general message receiver role, and the kind of access policies
enforced for the content model of a component. A component can
or cannot be imbued with a large degree of autonomy.

3.5 Goal-Directed

A goal directed agent is generally thought to understand high
level objectives and has the ability to pursue these goals. Trying
to pin down what actually constitutes a high level of objective is
difficult but the general notion is that an agent understands its
tasks at multiple levels of abstraction and this knowledge
influences how goals are completed. Framework support for goal-
directed agent behavior can take many forms [2, 6, 7, 9] that can
also be directly used as the internal component programming
model. Rule engine usage by MCT components is a particularly
well-suited programming model because its information structure
is closely related to the structure of information provided by the
MCT infrastructure. However, the MCT component model
provides only a thin layer of indirection to route messages
(frequent behavior requests) to their handler and does not dictate
that any particular programming model be used. Instead, a
variability point is available to introduce programming models
that are suitable for a specific component or a specific component
developer. MCT intends to provide a fundamental set of internal
component programming models with its system frameworks but
these are still to be determined.

3.6 Temporally Continuous

According to Franklin [5], a temporally continuous agent
continuously runs within a process or processes. This
characteristic attempts to identify a kind of implementation
autonomy that an agent might exhibit though there are many
implementation options available that make the characteristic less
usefully distinctive. Since MCT components can be fine or coarse
grain, implementing a one to one mapping of process to
component does not scale. A thread pooling idiom is being
considered by MCT that was previously used to provide pseudo-
continuous execution for a P2P distributed agent platform for the
National Airspace System was prototyped [4]. Its variability
points included the ability to control the number of true threads
shared by a group of agents and the ability to assign agents to

specific groups. It is speculated that a similar design is suitable
for MCT components.

3.7 Mobile

Mobile agents migrate from host to host. The benefits of mobile
agents have been enumerated [8], a common use case for
migration involves the motivation of an agent to switch hosts to
achieve some computational advantage. To date, no system
requirements exist that would necessitate designing-in component
mobility so this characteristic is not offered in the same spirit as
MAS agent mobility.

3.8 Intelligent

Intelligence is frequently measured by the degree to which an
agent is able to use reasoning to pursue its objectives. The degree
of intelligence of agents varies wildly depending on the
application domain and usage of the AOP. From the perspective
of implementation pragmatics, an intelligent agent typically, but
definitely not always, includes a rule engine for inference. MCT
provides an infrastructure for utilizing information semantics that
facilitates intelligence by encoding knowledge and making it
conveniently available and consumable. The Information
Semantics Manger offers semantically rich description of
component behaviors, ontology-based information model serving,
and a comprehensive suite of knowledge transformation services.
Additionally, MCT intends to provide a component with different
kinds of reasoning abilities as was discussed in Section 3.5. The
utilization of the MCT information infrastructure (via usage and
configuration) and the utilization of the component behavior
models (via parameterization), will determine the amount of
intelligence exhibited by a component.

3.9 Learning

A learning agent becomes more intelligent over time as a result of
its past experiences. Learning is part of the long term vision of
MCT that imagines components adapting to their live execution
environment and being self-configurable. The initial information
infrastructure being established by MCT facilitates learning by
offering concrete semantics that can be reasoned over. The ability
to learn itself, like extending a component with goal-directed
ability, is a component model variability point whose set of useful
implementations is also to be determined and dependent upon
customer need.

4. CONCLUSION

The Mission Control Technologies Project at NASA Ames
Research Center is developing component-based middleware with
multi-agent like characteristics that must satisfy many competing
quality attributes. The goal in engineering degrees of agency is to
build into an application framework the points of variability
(hooks) that enable a programmer to tune the degree of agency
used through customizations of the agent abstraction. MCT
components are provided with a semantically rich information
infrastructure that further supports their agency. With the
hypothesis stated that engineering large-scale multi-agent systems
requires framework support for achieving degrees of agency, the
reader is left with early estimates of key variability points with

empirical evidence to follow as the MCT team completes its next
iteration of development.

S. ACKNOWLEDGMENTS

Special thanks to Robert Filman for his work in defining MCT’s
initial version of the component model. Thanks to members of
the MCT team including Jay Trimble, Joan Walton, Harry
Saddler, Tom Dayton, Dmitriy Lyubimov, Alan Tomotsugu,
Dennis Heher, and Mitch Ai-Chang.

6. REFERENCES

[1] L. Bass, P. Clements, R. Kazman, Software Architecture in
Practice, Addison Wesley, 2003

[2] R.S.Cost, Y. Chen, T. Finin, Y. Labrou, Y. Peng, "Using
Colored Petri nets for Conversation Modeling," Issues in
Agent Communication, Lecture Notes in Artificial
Intelligence, Vol. 1916, May 1999, p. 178-192.

[3] FIPA, "FIPA Abstract Architecture Specification,"SC00001,
December 2002.

[4] S.P. Fonseca and R. Filman, Technologies for System Wide
Information Management P2P prototype, 2004

[5] S. Franklin and A. Graesser, "Is It an Agent, or Just a
Program? A Taxonomy for Autonomous Agents,"
International Workshop on Agents, Agent Theories,
Architectures, and Languages (ATAL), August 1996, p. 21-
35.

[6] M.L. Griss, S.P. Fonseca, D. Cowan, R. Kessler, "Using
UML State Machine Models for More Precise and Flexible
JADE Agent Behaviors," Third Intl. Workshop on Agent-
Oriented Software Engineering (AAMAS), July 2002, p.
113-125.

[7] Jess Expert System Shell,
http://herzberg.ca.sandia.gov/jess/docs/.

[8] D.B.Lange and M. Oshima, Programming and Deploying
Java Mobile Agents with Aglets, Addison-Wesley, 1998.

[9] A.S.Rao and M.P. Georgeff, “BDI Agents: From Theory to
Practice, “ Proceedings of the First International Conference
on Multiagent Systems (ICMAS-95), June 1995, p. 312-319.

[10] R. Waterman, D. Smith, P. McCraw. Command, Control,
Communications, Information (C3I) Architecture Reference
Book, White Paper 1: Applications, October 2005.

[11] M. Wooldridge, “Agents as a Rorshach Test: A Response to
Franklin and Graesser,” International Workshop on Agents,
Agent Theories, Architectures, and Languages (ATAL),
August 1996, p. 47-48.

[12] M. Wooldridge and N.R. Jennings, “Agent Theories,
Architectures, and Languages: A Survey,” Wooldridge and
Jennings editors, Intelligent Agents, Springer-Verlag, 1995,
p. 1-22.

Columns on Last Page Should Be Made As Close As
Possible to Equal Length

